Divisible linear rank metric codes

نویسندگان

چکیده

A subspace of matrices in F m×n qe can be naturally embedded as a xmlns:xlink="http://www.w3.org/1999/xlink">em×en xmlns:xlink="http://www.w3.org/1999/xlink">q with the property that rank any its matrix is multiple e . It quite natural to ask whether or not all subspaces such arise from over larger field. In this paper we explore question, which corresponds studying divisible codes metric. We determine some cases for question holds true, and describe counterexamples by constructing do

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank-metric LCD codes

In this paper, we investigate the rank-metric codes which are proposed by Delsarte and Gabidulin to be complementary dual codes. We point out the relationship between Delsarte complementary dual codes and Gabidulin complementary dual codes. In finite field Fmq , we construct two classes of Gabidulin LCD MRD codes by self-dual basis (or almost self-dual basis) of Fmq over Fq. Under a suitable co...

متن کامل

On the List-Decodability of Random Linear Rank-Metric Codes

The list-decodability of random linear rank-metric codes is shown to match that of random rank-metric codes. Specifically, an Fq-linear rank-metric code over F m×n q of rate R = (1 − ρ)(1 − n m ρ) − ε is shown to be (with high probability) list-decodable up to fractional radius ρ ∈ (0, 1) with lists of size at most Cρ,q ε , where Cρ,q is a constant depending only on ρ and q. This matches the bo...

متن کامل

Properties of Rank Metric Codes

This paper investigates general properties of codes with the rank metric. First, we investigate asymptotic packing properties of rank metric codes. Then, we study sphere covering properties of rank metric codes, derive bounds on their parameters, and investigate their asymptotic covering properties. Finally, we establish several identities that relate the rank weight distribution of a linear co...

متن کامل

Rank-metric codes and applications

The State of Art for rank codes is represented. The theory and applications are considered.

متن کامل

Tensor codes for the rank metric

Linear spaces of n× n× n tensors over finite fields are investigated where the rank of every nonzero tensor in the space is bounded from below by a prescribed number μ. Such linear paces can recover any n × n × n error tensor of rank ≤ (μ−1)/2, and, as such, they can be used to correct three-way crisscross errors. Bounds on the dimensions of such spaces are given for μ ≤ 2n+1, and constructions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2023

ISSN: ['0018-9448', '1557-9654']

DOI: https://doi.org/10.1109/tit.2023.3241780